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Abstract. This paper discuss the ability to obtain a reliable pervasive
information at home from a network of localizing sensors allowing to fol-
low the different locations at which a dependent (elderly or handicapped)
person can be detected. The data recorded can be treated as the sequence
of color coding numbers of balls (symbolizing activity-stations) taken in
a Polya’s urn, in which the persistence of the presence in an activity-
station is taken into account by adding a number of balls of the same
color as the ball just drawn. We discuss the pertinency of such a proce-
dure to early detect sudden or chronic changes in the parameters values
of the random process made of the succession of ball numbers and we
use it to trigger alarms.

1 Introduction

Since about 12 years [1]-[3], many experiments have been achieved for watching
dependent people at home, in particular elderly and handicapped persons. In
order to acquire data necessary to permit the alarms triggering, numerous sen-
sors have been invented, in particular for localizing the person at home or in the
surroundings. These localizers are on the body (like the GPS or the accelerom-
eters), in the flat rooms (on the walls, like the infrared or radar detectors or on
the ground, the bed or the chairs, like the pressure sensors, cf. Figure 1), on
the doors (like the magnetic switches) or in gardens and streets (like the video-
cameras). The sensors network is very important to follow up the dependent
people during their walk trajectories inside home or outside. If the space/time
data are acquired on healthy elderly people or on patients suffering from a neuro-
degenerative disease, the sensors recording must be very well calibrated, to give
birth to specific profiles of the time series corresponding to the successive loca-
tions in rooms inside the flat or in specific places inside a room [8]. A big hope
comes from this ambient information to be able to detect a progressive stereo-
typed behavior (for the early diagnosis of a chronic disease like the Alzheimer
one) or a sudden fall on the ground. The optimal use of this pervasive informa-
tion implies fusion and scoring from the primary data, in order to detect minimal
changes in time profiles: a way to do that is to considerably simplify the informa-
tion by giving a color coding number to the different locations (pertinent for the



watching), and to follow up the succession of these numbers, e.g. by interpreting
them as the succession of colors of balls drawn from a Polya’s urn: in this kind
of urn, the persistence (or a contrario the unstability) of an action in a location
is represented by adding ni(k(i)) balls of color k(i), when a ball of color k(i) has
been obtained at time i. If ni(k(i)) depends only on i through k, the random
process constituted by the succession of the n(k(i))’s is called homogeneous and
a change in homogeneity can be detected by estimating the n(k)’s and testing
their significant consecutive differences. We will give in the following elements of
material and methods in order to describe more precisely the data collection and
treatment procedures, and then we will discuss the pertinence of such a research
protocol and its implementation in the current life of dependent people at home.

Fig. 1. infrared (arrows) for localizing dependent people in a health smart home
(left) & pressure sensors (right: FSA Seat 32/63 pressure mapping system, Vista
Medical Ltd.)

2 Material and methods

A private apartment of an older woman, aged 80, at the Institution Notre-Dame
(Grenoble, France) is equipped with a health integrated smart home (HsH). In
general, the underlying principle of the HsH consists in continuously collecting
data regarding her individual activity within her home environment and send-
ing them to a telemedicine center via electronic mails (SMTP). As illustrated
in Figure 2, our experimental health smart home includes 7 presence infra-red
sensors (DP8111X, ATRAL), allowing the detection of the infrared radiations
emitted by body surfaces (face, hands), and hence the monitoring of individuals
successive activity phases within her home environment [10]-[13].

These different detections are timestamped and stored in a database (SQL)
and then transmitted by e-mail through an attached file (XML). They permit



Fig. 2. Architecture of the experimental health smart home. Location sensors are
placed at different places in the apartment, allowing the monitoring of individuals
successive activity phases within his/her home environment: 0. Entry hall - 1.
Living room - 2. Bedroom - 3. WC - 4. Kitchen - 5. Shower - 6. Washbasin.

the continuous real-time surveillance on the screen of a dedicated workstation at
the Hospital at Home (HaH) service which possesses nurses and doctors ready to
visit the person at home in case of an acute pathologic problem or to transmit to
a chronic disease service the information about the occurrence of a problematic
change in the physiologic variables recorded at home (cf. Figure 3 left and center).

The data analysis of the records at home is primarily done through real-time
updated descriptive statistics like presence histograms (Figure 3 right) but it
is also achieved by using more sophisticated random processes techniques like
time series or Polya’s urns. The random processes made of the succession of the
recorded localization data have been indeed already modelled by using classical
time series techniques like Box-Jenkins auto-regressive processes in which were
extracted the entropy [2] or the coefficients of the linear auto-regression [15]-[19].
In this paper,the information to be treated is reduced at the minimum and the
only thing retained is the succession of the activity-station-codes corresponding
to the successive locations of the elderly people at home. An important feature
to extract from the random process made of the succession of these activity-
station-codes is the breaking times at which a specific model of Polya’s urn
is no more avalaible, obliging to change the values of the parameters n(k(i))’s
corresponding to the (algebraic, possibly negative) number of balls which must
be added after obtaining a ball of color k(i) at time i. It is supposed that if there
is no pathologic change (sudden due to a fall or chronic due to the entrance in a
neuro-degenerative disease), n(k(i)) is not depending explicitely on the time i,
but only on the activity-station-code k(i).



Fig. 3. Watching workstation at the HaH (Hospital at Home) service for the
surveillance of dependent people at home

The first use of Polya’s urns to represent persistence in a succession of qual-
itative data has been done since 25 years by climatologists for the sequence
of dry and wet days [4,23], and a lot of fundamental [5,7,22], or more applied
[6,9,14], papers have been after published for studying the theoretical proper-
ties of the corresponding random process, or for estimating its parameters or its
thermodynamical variables (like the entropy of its stationary distribution).

The Polya’s urn scheme is a Markov chain in which the balls are sequentially
drawn from an urn initially containing a given number a0(j) of balls of the j-
th color, j = 1, . . . , N , and after each draw the ball is returned into the urn
together with n(j) new balls of the same color j. It is assumed that we observe
at time i the ai(k)’s (corresponding to the number of balls of color k drawn from
the Polya’s urn at time i) and bi =

∑N
c=1 ai(c) balls and that we estimate the

parameters n(1), . . . , n(N) supposed to be positive, by observing the frequencies
in m trials of occurrence of balls of corresponding colors. For processing the
estimation of n(j)’s, we consider the integer-valued random vector denoted ai =
(ai(1), . . . , ai(N)) and distributed, if n(j) ≥ 0, in the set:

KN = {k = (k1, . . . , kN ) : ki integers /s =
∑N

c=1 kc ≥ b0 =
∑N

c=1 a0(c)}
according to:

∀i ∈ {1, . . . ,m},
P ({ai = k}

∣∣ ai−1) =

ai−1(j)
bi−1

,
if kj = ai−1(j) + ni(j)
and ∀r 6= j, kr = ai−1(r)

0, if not,

where ni(j) is the number of balls of color j added at time i. Let us denote
ni =

∑N
c=1 ni(c) and suppose that ni = Np > 0, where p is the mean persistence

rate (supposed to be independent of the time). When the ni’s are equal, the
probability above reduces to:

∀i ∈ {1, . . . ,m}, P ({ai = k}
∣∣ ai−1) =

ai−2(j) + p

bi−2 + p
,

where j is the index in {1, . . . , N} for which we have: kj = ai−1(j) + p and
∀r 6= j, kr = ai−1(r).



Then we can calculate the probability P ({ai = k}), when kj = a0(j) + sjp,
by using the formula:
∀i ∈ {1, . . . ,m},

P ({ai = k}) = Ck1,...,kN

i

[∏N
j=1

∏ k(j)−1
p

sj=0 (a0(j) + sjp)
]

∏i−1
s=0(N + sp)

,

where the ki’s verify: ki ≥ 0 and
∑N

c=1 kc = i.
Let us now consider possible strategies of estimating the persistence p and

the initial distribution a0:
1) If we know the initial distribution of balls a0, observing the empirical

frequency f({ai = k}), we can estimate p by calculating the likelihood function
and using the maximum likelihood estimator

2) If we do not know the initial distribution nor the persistence, we can:
- either estimate it by deciding that b0 is fixed to a multiple of the number

of activity-stations (e.g. twice this number) and by using a procedure similar
to those proposed in [6], by supposing p known, and after deriving this initial
estimation as function of p, finally trying to fix p at the integer value maximizing
the likelihood function

- or, if the attempt above is not succeeding, to assume the uniformity of the
initial distribution (i.e. decide that the initial number of balls was the same for
each color/activity-station).

In the case where: ∀j ∈ {1, . . . , N}, a0(j) = 1, the probability of having the
balls vector equal to k at time i becomes:
∀i ∈ {1, . . . ,m},

P ({ai = k}) = Ck1,...,kN

i

[∏N
j=1(

∏ k(j)−1
p

s=0 (1 + sp))
]

∏i−1
s=0(N + sp)

,

where the ki’s verify: ki ≥ 0 and
∑N

c=1 kc = i.

Then by replacing P ({ai = k}) by f({ai = k}), we can estimate p. The
empirical frequency f({ai = k}) is calculated from observations done at different
days supposed to be independent (the initial distribution a0 is suppposed to
remain the same at the beginning of each day and the days are supposed to
be independent). If there is 2 persistence parameters to estimate, e.g. p for the
living (activity-station number 1) and p′ for the other activity-stations, we can
use a sequential probability ratio test (SPRT) procedure [21] by considering
that there are only 2 super activity-stations codes, 1 for the living and 2 for the
other activity-stations and by trying to estimate the best sampling size threshold
allowing a significant decision in testing the hypothesis H0 ≡ {p = p′} (i.e. the
persistence is the same in the two super activity-stations) against H1 ≡ {p 6= p′}
(i.e. the persistence is different in the two super activity-stations).

3) If we have no information about the initial distribution of balls a0 (even
concerning the initial total number of balls b0), but if we suppose that there is
the same persistence in each activity-station, we can follow during a sufficient
time the activity of the dependent person at home and estimate the conditional
probability:

P ({ai+1(j)− ai(j) = 1}
∣∣∣ {ai(j) = k}) =

a0(j) + kp

b0 + ip



By replacing the conditional probability above by the corresponding condi-
tional empirical frequency (estimated from series of independent activity days
for different activity-stations), we can get an estimation of p. We can also per-
form a test of H0 ≡ {p = 1} against H1 ≡ {p > 1}, by comparing the empirical
frequency of the event {di+1(j) = 1} ∩ {di(j) = 1} (i.e. the frequency to have
consecutively the same color j, if di(j) is the number (0 or 1) of balls of color
j drawn from the Polyas’s urn at time i) to its theoretical probability, which is
binomial under H0, with the probability to draw a ball j at time i equal to a0(j)

b0
.

When i increases, the estimation of a0(j)
b0

becomes rapidly very precise and allows
the use of a classical test of comparison between an empirical and a theoretical
frequency.

In the present case of persistence in activity-stations, we can assume that
after a series of presence in an activity-station equal to or more than 2 recording
intervals, if the activity-station changes, that involves a reset and we return to
the distribution a0. Then, we can use the following sequential procedure for tests
: i) initially as above H0 ≡ {p = 1} against H1 ≡ {p > 1},
ii) if H0 is rejected, H1 ≡ {p = 2} against H2 ≡ {p > 2},

iii) if H1 is rejected, H2 ≡ {p = 3} against H3 ≡ {p > 3}, . . .
until we reach, with the value of p = k at the step k, a probability of activity-

station changing (rejection of Hk−1) in k steps more than the threshold value
0,95.

3 Data and Results

The files treated bring together the data recorded in the flat of the elderly people
in a period of 8 months from the 24th of March 2005 until the 25th of November
2005. The file follow the structure:

Table 1. The times and locations of the records

Day Month Year Hour Minute Second activity-station-code

24 03 2005 17 37 36 1
. . .

The columns represent successively the time (with the day, month, hour,
minute and second of the recording) and the activity-station-code corresponding
to the location of the watched person at this time.

From these records, we have tested different hypotheses about the persistence
following the procedure given in the previous Section. We will give below on a
short example a sketch of our testing strategy. The data for 200 record times
were used for performing the two following steps:

i) - we calculated the empirical frequency a0(1)
b0

= 58
200 = 0.29

- we use it for testing H0 against H1. The probability to observe 2 consecutive
stays in the living (activity-station 1) is equal, under the hypothesis H0 to 0.29×
0.29 = 0.084±0.06 (the variance of an empirical frequency observed on a records
sample of size i being estimated by f(1−f)

i ). Then the hypothesis H0 is rejected



with a significativity less than 1/1000: large deviations (with probability less
than 1/1000) of the number of pairs of consecutive stays in living start at the
value 29, and there are 31 such pairs in the records .

ii) by pursuing the sequence of tests, we found that p = 3 is the best estima-
tion of the parameter of persistence in the living, because it is the first integer
giving probabilities 6/10, 6/13, 6/16, 6/19 and 6/22 of exiting from the living
after respectively 1, 2,. . . , 6 stages in this activity-station. These probabilities
have been estimated by the corresponding empirical frequencies of exit from
the living after 1, 2,. . . , 6 stages. These empirical frequencies were respectively
equal to 14/24 ± 0.06, 4/9 ± 0.06, . . . , 1/3 ± 0.07 in the experimental records of
200 sampling times.

4 Discussion

We have assumed in the previous calculations 5 important hypothesis we can
now discuss:

1) the activity is homogeneous in time and space inside a day, i.e. we have the
same persistence for each activity-station sojourn and a reset of the persistence
memory at the end of a sojourn.

We have surely a persistence more important in activity-stations in which
several tasks can be done involving a long time investment, compared to stereo-
typed and standardized tasks done in other activity-stations.

2) the activity records sequence is a Markovian process, for which the future
depends on the past only through the present.

There are surely some breaks of the Markovian character, specially during
activities asking for more attention (like cooking or reading), in which a time
series approach would be more convenient than the Polya’s urn modelling (the
classical time series treatment involves the extraction of a tendency through a
mobile time window, and then the calculation of a time linear regression order
[2]).

3) the role of the activity-stations is symmetrical, i.e. each activity-station
generates the same initial conditions in the initial distribution of balls (repre-
senting activity-stations) in the Polya’s urn.

Because of many differences of surface, functionality, illumination, the activity-
stations are not playing the same role and have different weights after resetting,
depending on the time in a day (certain tasks being executed only once at a
fixed hour of the morning or afternoon).

4) the persistence is non depending on the time
In fact, there are nycthemeral variations of activity ([15,16,18]) as well as

seasonal effects we have to take into account for making more precise the statis-
tical structure of the persistence. A remanence of the persistence surely exists,
especially at the end of day where the level of awakeness and attentiveness is
diminished.

5) successive days can participate to the same independent identically dis-
tributed (iid) sampling.



In fact, there is certainly a dependency linked to the place of the days in
the week (Saturday being for example used for recapitulating the working days
activity and for anticipating the leisure organization of Sunday).

5 Conclusion

The monitoring of dependent people at home allows the recording of their ac-
tivity, especially the activity-station changing sequences, what is very useful to
detect deviances with respect to the normal behavior. The detection of large devi-
ations from the ”normal” individual distribution of the random process retained
for the ordinary walking of a dependent person inside his flat, permits to antic-
ipate the fall, whose risk is high and renders it ineluctable a day, after 80 years.
The fixed or embarked localizing sensors give sufficient indications to trigger an
alarm at the level of the patient (for a real-time correction of a desequilibrium,
in case of vestibular pathologies [20]) or at the level of the Hospital at Home
service (for an emergency sending nurses or doctors, depending on the gravity
of the detected dysfunctioning). The body sensors are incorporated in ordinary
clothes rendering the surveillance ergonomically acceptable. We are now devel-
opping techniques for studying (like for a drug), the ”toxicity” of the watching
system, toxic here meaning unaesthetic, intrusive, invasive and/or pathogenic,
the level of toxicity depending on the ”compliance” of the recorded subject. We
present the beginning of such studies in a companion paper in the present issue
[20] and we will develop further psycho-physic studies for the determination of
the liminal level of sensitivity/specificity and of the level of rejection, necessary
for quantifying the degree of acceptability of the sensors network studied in this
paper.
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