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Estimation of Task Persistence Parameter from
Pervasive Medical Systems with Censored Data

Yannick Fouquet, Céline Franco, Bruno Diot, Jacques Demongeot and Nicolas Vuillerme

Abstract —This paper compares two statistical models of location within a smart flat during the day. The location is then identified
with a task executed normally or repeated pathologically, e.g. in case of Alzheimer disease, whereas a task persistence parameter
assesses tendency to perseverate. Compared with a Pólya’s urns derived approach, the Markovian one is more effective and offers up
to 98% of good prediction using only the last known location but distinguishing days of week. To extend these results to a multisensor
context, some difficulties must be overcome. An external knowledge is made from a set of observable random variables provided by
body sensors and organized either in a Bayesian network or in a reference knowledge base system (KBS) containing the person’s
actimetric profile. When data missed or errors occurred, an estimate of the joint probabilities of these random variables and hence
the probability of all events appearing in the network or the KBS was developed and corrects the bias of the Lancaster and Zentgraf
classical approach which in certain circumstances provides negative estimates. Finally, we introduce a correction corresponding to a
possible loss of the person’s synchronization with the nycthemeral (day vs night) zeitgebers (synchronizers) to avoid false alarms.

Index Terms —smart flats for elderly people, pervasive watching, data fusion, censored data persistence parameter, Bayesian
networks, knowledge based systems, joint probabilities reconstruction, circular Gumbel distribution

✦

E rrare humanum est,
perseverare diabolicum.

1 INTRODUCTION

IN numerous neuro-degenerative diseases, post-brain
stroke or post-heart failure disorders, one can meet

temporo-spatial disorientation [1], [2], [3], leading to
many errors during the execution of daily tasks[4] until
observing a pathologic perseveration [5], i.e., an abnor-
mal repetition of already successful performed tasks
(e.g., a pathologic recurrence or ”kyrie” of buying suc-
cessively the same object) which causes a deep hand-
icap in fulfilling current vital functions. It is generally
accepted that early and accurate diagnosis of neuro-
degenerative pathologies, like Alzheimer disease (AD),
is critical for improving their quality of life [6], [7].
The main idea of this paper is to develop an easy
procedure to acquire, process and interpret surveillance
at home data in order to get a reliable task persistence
parameter useful as perseveration index for triggering
alarms and/or starting an early diagnostic search for
neuro-degenerative pathologies like AD. That implies
an adapted activity recording involving a multitude of
sensors of very different natures (including infrared,
radar, sound, accelerometer, temperature, etc.) both in
the flat [8], [9], [10], [11], [12], [13], [14], [15] (Figure 1)
and embedded on the person [16], [17], [18], [19] (Figure
2). Hence, an individual nycthemeral actimetric profiles
[14] may be drawn and compared to mean canonical
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profiles of clusters grouping samples of reference cases
accounting for the actimetric variability in a population.
In order to query the reference profile matching the best
with an individual one [20], [21], [22], [23], [24], [25],
[26], [27], we query it in a adequately modelled data base
permitting the search under hybrid criteria (qualitative,
corresponding to medico-socio-economic data about the
environment of the surveyed person as well as quanti-
tative, e.g. those provided by localization sensors).

The reference data request is made easier by defin-
ing an ontology from the concepts underlying the ob-
served variables like dependence index, frailty score [28],
memory performance, as well as social class, type of
familial or medico-social helpers, economic resources,
etc. This ontology allows to build a knowledge based
system (KBS), i.e., a program for generalizing and rapidly
querying a knowledge base, which is a special kind of
database for knowledge management. For taking alarm
decisions after querying and matching information from
a KBS, a Bayesian network is used. It is represented
by a directed acyclic graph representing dependencies
embodied in given joint probabilities distribution over
a set of random variables expressing uncertainty inside
the KBS.

One of the main functionalities of KBS and Bayesian
networks is to properly define and organize thanks to an
ontology, the concepts to which a given variable, object
or notion are related. These concepts are described by
a set of qualitative (Boolean or discrete) or quantitative
(discrete or continuous) variables. This allows decisions
of expert type [29], [30], [31], e.g. by assigning an object
to a class of concepts in the context of a classification
problem, or to find all objects belonging to a concept
or obeying an assertion in the context of querying a
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Fig. 1. Location sensors are placed at different places
in the apartment to monitor the individual’s successive
activity phases within his/her home environment: 0. Entry
hall - 1. Living room - 2. Bedroom - 3. WC - 4. Kitchen - 5.
Shower - 6. Washbasin.

Fig. 2. Body sensors located on smart clothes for watch-
ing up the physiologic state of frail persons in or out their
home

knowledge base. If the description of concepts is done
from censored, missing or uncertain data, we talk about
a random classification problem. This kind of problem is
based on the estimation of the joint probabilities distribu-
tion corresponding to the observations of random vari-
ables used to describe the concepts, identified as events
of the σ-algebra generated by these random variables.
A Generalized Data Warehouse (GDW) is a particular
KBS structuring data through the σ-algebra generated
by the random variables defining its assertions [32]. An
atom of this σ-algebra is called an equi-class. Each union
of equi-classes is called a view. Each view is then the
disjoint union of intersections of atomic events called

equi-classes in [32] (or primary assertions in a KBS) or
of their complements (contraposed primary assertions).
As in contingency tables, certain equi-classes can be
unobserved due to censored, missing or falsely updated
data. Then, it is necessary to estimate the uncertainty
of these equi-classes, and after of the events containing
these equi-classes.

We define in Section 2 the persistence indexes either
as the number (supposed constant in time) kj (kj ≥ −1)
of balls added in a Pólya’s urn after pulling a ball of
a given color j, or as the recursivity order p (p ≥ 0) in
a Markov chain in which the variable Xi depends on
p previous one. The Markov chain order is determined
by speech recognition techniques adapted to predict
the location of a person from geo-localization data. In
Section 3, an application of the persistence indexes from
location data of a home-dwelling individual is presented.
In Section 4, we describe the solutions we proposed to
overcome difficulties at each step of the data processing
of real data in a multisensor context. If there are missing,
censored or false data concerning the events built from
the observation of both vertical and horizontal random
variables, we remark in Section 4.1.1 that these events
can be defined as union of atomic events or equi-classes,
corresponding to intersections of marginal events in-
volving only one variable. A classical approach due to
Lancaster and Zentgraf (LZ), based on the treatment of
missing and censored data in contingency tables, permits
to reconstruct the probability of any equi-class in the
context of discrete variables, without passing through
a distribution kernel estimation or a reconstruction of
inter-variable dependences through methods like the
logistic regression [33], [34], methods more convenient in
case of quantitative variables. However, the LZ approach
provides in certain cases (especially when the marginal
events are dependent in an exclusive way) negative
estimates. In Section 4.1.2, we hence propose a new
estimator based on the respect of both the positivity of
joint probabilities and the projectivity equations of the
marginal distributions. We show that this new estimator
gives better estimates for joint probabilities than the
previous LZ approach, especially in the case of disjoint
dependence between events. We prove in Section 4.1.3,
that the new estimator maximizes an entropy variational
criterion and in Section 4.1.4, we give some numerical
examples of respective use of classical and new estima-
tion methods. In Section 4.1.5, we describe an optimized
strategy for giving the most realistic value to any joint
probability, from the knowledge about the marginal and
order 2 joint empirical frequencies (supposed known
and not falsed by censoring, missing or badly updating
data). We show how the marginal and second order
joint frequencies can be initialized (resp. incrementally
updated) according to a Bayesian network or KBS a
priori (resp. new) information, allowing the estimation
of any higher order joint probability. In section 4.2, we
give an example of multisensor surveillance involving
a vertical sampling. Finally, we give in Section 4.3 a
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procedure to take into account a possible phase shift
between consecutive days showing the same sequence
of tasks along the daily activity, but shifted in time
without any pathological signification except a change in
the sleeping clock, causing a loss by the elderly people
of their synchronization with the nycthemeral zeitgebers
(synchronizers), like meals or social activities.

2 INDEXES OF PERSISTENCE FROM ACTIMET-
RIC DATA

Among the possible approaches for modelling the acti-
metric data, two methods have been selected. The first
one focuses on the Pólya’s urns [35], [36], [37], [38] in
which the observed activity at time t is depending on
the whole past (since a reset supposed to be made at
the beginning of each day). The second one concerns a
first order Markov chain approach [39], [40] in which
the dependency of the future of t lies only through the
present time t. In both models, a persistence parameter
is defined. For deciding between these two methods, we
propose to use the statistics equal to the empirical mean
E of a task remaining (at time t) duration, by identifying
a task with the location at which it is performed.

2.1 Pólya’s urns

In the Pólya’s urns approach, the location is seen as a
colored ball. Each second, a ball is taken from an urn.
The balls contained in the urn represent the distribution
of probabilities of each location. To take into account the
persistence in tasks, some balls - from the same color as
the one taken - are added in the urn.

The main idea is to considerably simplify the infor-
mation by giving a color coding number to the different
locations (pertinent for the watching), and to follow up
the succession of these numbers, e.g. by interpreting
them as the succession of colors of balls drawn from the
urn. The persistence (or a contrario the instability) of an
action in a location is represented by adding (or taking
away, if ki(t) < 0) ki(t) balls of color i, when a ball of
color i has been obtained at time t.

In this approach, the persistence in task i is equal to
the parameter ki(t) normalized by the initial content size

of the urn b0 and denoted πi(t): πi(t) =
ki(t)
b0

.
In the following, for the sake of simplicity, we suppose

ki(t) constant in time and thus πi(t) too. By denoting
xi(t) the number of times where the ball of color i
has been drawn from the urn until time t, and pi(t)
the probability to get a ball of color i at the (t + 1)th

drawing, we have: pi(t) =
pi(0)+xi(t)πi

1+tπi
.

We can estimate πi from the empirical frequencies
fi(t)’s to get a ball of color i at the (t + 1)th drawing
(estimated in a series of days supposed to be indepen-
dent), whose expectation is pi(t):

fi(t) =
fi(0) + xi(t)πi

1 + tπi
and πi =

fi(0)− fi(M)

Mfi(M)− xi(M)

where M is the total number of drawings by day.

We can also calculate two estimators of the ith task
remaining duration Ei.
The first estimator Ei,1, consists in calculating the prob-
ability ci,m(t) to have m consecutive drawings of a ball
i from the drawing t:

∀m ∈ N : 0 ≤ m ≤ (M − t),

ci,m(t) =
(

1− pi(t+m+ 1)
)

·
m
∏

j=0

pi(t+ j)

=
(

1−
pi(0) + xi(t+m+ 1)πi

1 + (t+m+ 1)πi

)

·
m
∏

j=0

pi(0) + xi(t+ j)πi

1 + (t+ j)πi

with : pi(M + 1) = 0
The estimator Ei,1 could then be calculated by re-

placing the probabilities by the corresponding empirical

frequencies: Ei =
1

M+1

∑M
t=0

∑M
m=0 m · ci,m(t) Thus,

Ei,1 ≈
1

M + 1

M
∑

t=0

M
∑

m=0

m ·
(

1− pi(0)+xi(t+m+1)πi

1+(t+m+1)πi

)

·
∏m

j=0
pi(0)+xi(t+j)πi

1+(t+j)πi

Ei,1 ≈
1

M + 1

M
∑

t=0

M
∑

m=0

m

m
∏

j=0

fi(t+ j)
(

1− fi(t+m+ 1)
)

The 95%-confidence interval of Ei,1 could then be
calculated by estimating the 95%-confidence interval of

the fi’s which is :

[

fi ± 1.96
√

fi(1−fi)
M

]

The null-hypothesis H0 : ”the persistence model is a
Pólya’s urn model” is rejected if Ei,1, does not belong
to this interval. Otherwise, this model could be used to
represent the persistence in task.

The second estimator Ei,2 is calculated by considering
the empirical mean (on observed days) of the remaining
duration in a day which is defined by:

Ei,2 =
1

M + 1

M
∑

t=0

zi(t),

where :

• yi(t) = xi(t)−xi(t−1) is the number (1 or 0) of balls
of color i drawn at time t,

• zi(t) = max0≤m≤(M−t){m|
∏m

j=0 yi(t+ j) = 1} is the
length of the sequence of ”drawing a ball of color
i” (possibly 0) since a drawing at time t of a ball of
color i.

2.2 Markov model

In the Markov chain approach, each location is a node
with probabilities of transitions from one location to
another one. The succession of locations is seen as a
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route in a Markov chain. A first order Markov chain
takes into account the last location in order to predict the
present one. The generalization of such a model offers
to represent the probability of a location depending on
the historic of locations.

In this approach, let us denote by pij the probability
(supposed to be constant) to draw a ball of color j after a
ball of color i. Then pii could be the persistence in task i
parameter. If we denote by pj the probability (supposed
to be constant) to draw a ball of color j, we have: pj =
∑k

i=1 pij , where k is the number of colors (i.e. of types
of task).

Moreover, by noticing that the variable zi(t) has a
distribution independent of t we have: P (zi = 0) = (1−
pi) and :

∀l ∈ N : 1 ≤ l ≤ M, P (zi = l) = pi(1− pi)(pii)
l−1,

then the expectation of the ith task remaining duration

Ei could be calculated as: Ei =
∑M

l=0
(l+1)

2 P (zi = l)
Thus, Ei can by estimated by :

Ei,3 =

M
∑

l=0

l + 1

2
fi(1− fi)(fii)

l−1

The 95%-confidence interval of Ei,3 could be calcu-
lated by estimating the 95%-confidence interval of the
fi’s and fii’s which are respectively :
[

fi ± 1.96

√

fi(1 − fi)

M

]

and

[

fii ± 1.96

√

fii(1− fii)

M

]

The 95%-confidence interval could also be more accu-
rate by empirically calculus using min and max values

of Ei,3 :

[

min1≤i≤l

(

Ei,3

)

. . .max1≤i≤l

(

Ei,3

)

]

The null-hypothesis H0: ”the persistence model is a
first order Markov chain model” is rejected if Ei,3 does
not belong to this interval. Otherwise, this model could
be used to represent the persistence in task.

If these two tests are concluding to the acceptation, one
prefers the first order Markov chain due to its simplicity.
If both tests above are concluding to the rejection of the
null-hypothesis, we retain the model having the closest
distance between Ei,1 and the confidence interval of Ei,j

(j = 2, 3).

Determination of the Markov chain order

A statistical method has been implemented to predict
the next location on the basis of the location history
[41]. Currently, n-grams location probabilities are used
to compute the most likely follow up location. To predict
the ith location ai, we use the n − 1 previously uttered
locations and determine the most probable location by
computing:

ai = argmaxaP (a|ai−1, ai−2 . . . , ai−n+1)

To estimate this probability, relative frequency tech-
niques are employed.

Otherwise, in many real-situations, it was not possible
to collect a large amount of data to properly estimate
the statistics. This implies that it is not reasonable to use
classical smoothing techniques. We need a solution for
the two following problems:

1) unexpected input: the location model based on n-
grams location sequences can not be used in case
unexpected input occurs,

2) lack of training data: the n-grams model predict
several locations with the same probability.

The treatment of these cases consists in using the (n−1)-
grams model, recursively. Once the order of the Markov
chain is determined, the associated transition matrix may
be approximated by the empirical frequencies. Another
way to quantify the perseveration in behavior may
be to calculate the entropy of the trajectories as [42]:

HM =
∑k

i=1

∑k
j=1 πi · mi,j · log2(mi,j) where π is the

stationary distribution and mi,j are the coefficients of the
transition matrix. Weak values of entropy correspond to
very regular patterns whereas high values depict a var-
ied behavior. A decrease in entropy may be interpreted
as a loss of diversity in the accomplishment of activities
of daily living in relation with perseveration.

3 PRELIMINARY EXPERIMENT

3.1 Materiel and methods

Since 12 years, many experiments have been conducted
for watching dependent people at home, in particular
elderly and handicapped persons [43], [9], [14], [44], [45],
[46]. Some of important things to be done are localizing
a person. For acquiring data necessary to permit this
localization, various sensors haven been invented. This
sensors networks permit to represent the location of a
person in a flat room (Figure 1). Recording timestamped
locations permits us to create a corpus for experiments
[10].

The corpus describes the location of an elderly person
within his/her home environment in time. It is on the
form of a timestamped location. Timestamps are space
separated numerals representing day of month, month,
year, hour, minutes, seconds of the location captured.
The location itself is a code (cf. Figure 2). Note that
the activity-station-code (9) corresponds to an error. An
example of a line of the corpus is 18 07 2007 11 27 48 4,
which suits as : on 07/18/07, at 11:27,48”, subject was
in the kitchen. The files treated bring together the data
recorded in the flat of the elderly people in a period of
10 months from the 03/22/05 until the 01/24/06 and a
period of 6 months from the 07/18/07 to the 01/15/08.

For this experiment, the corpus has been shapped up
to represent the location of the person, each second. A
line of this ’new’ corpus represents a day as a series
of location, each second. It is on the form of a space
separated locations as a code as explained above. For
example, ”s 2 2 2 . . . 2 2 3 3 3 . . . 3 3 4 4 4 . . . e” suits as
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TABLE 1
Good prediction rate (%) depending on day and for the

whole corpus
n mon tue wed thu fri sat sun total

1 58.00 57.99 59.79 64.25 60.65 63.89 61.61 61.07
2 90.65 92.32 91.57 91.87 93.36 92.51 91.39 92.01
3 90.71 92.27 91.67 91.78 93.34 92.01 91.73 91.99
4 90.82 92.07 91.44 91.91 93.23 91.97 91.59 92.07

5 90.58 91.77 91.46 91.53 92.88 92.00 91.54 92.02
6 90.11 91.64 91.06 91.35 92.61 91.81 91.28 91.83
7 89.97 91.41 90.91 91.10 92.37 91.45 91.08 91.67
8 89.80 91.20 90.51 90.92 92.21 91.26 90.91 91.50
9 89.75 91.00 90.22 90.68 92.17 91.02 90.80 91.35

10 89.57 90.82 90.15 90.58 92.20 90.88 90.78 91.21

: since s the start of day, the person was in the bedroom
(2), after x seconds (x is the number of successive 2), the
person passed in the toilet (3), then after y seconds (y is
the number of successive 3), she passed in the kitchen
(4), etc. The close of day is represented by e.

The n-grams model was applied with (n − 1) last
minutes used to predict the nth one. We choose to set
n up to 10 so that we watch for the 9 last minutes in
order to predict the 10th. The corpus has been cut into
80% for learning model, 20% for testing it. Tests have
been done for an history of location set from 1 to n (10
here).

3.2 Results and discussion

3.2.1 Prediction performance

A first test was made with the whole corpus without
date distinction (day of week, day of month, month,
hour of day, etc.). Last column of table 1 shows a best
prediction with n = 4. Indeed, approximatively the same
performance is obtained with n > 4 but n does not
need to be bigger than 4. The last three minute location
is sufficient to predict the next one. After that, raw
performance seems to increase with n. This result seems
to indicate that accuracy by watching too far in the past
is not a good way to predict the future location of a
person.

A second test was made by distinguishing the day of
the week to take into account regular outdoor-activities.
Table 1 shows a best prediction approximated rate with
n = 4 (using the last three locations to predict the next
one). Performance seems to decrease with n increasing.
The real best performance, in bold, shows that results
differ according to day of week but a good approxima-
tion could be made with n = 4. Moreover, with n = 4,
results of good prediction differ according to the day of
week from 90.82% on Monday to 93.23% on Friday. It
seems to show that day of week is an important factor
of variation.

First results tend to show best performances occurring
in the first order Markov case with n = 4, and a
degradation of performances with n increasing up to 10.
This seems to indicate that watching more far in time
is more accurate but a bad way to predict the future
location of the person.

TABLE 2
Empirical frequencies fi (%)

0 1 2 3 4 5 6 9 s

9.72 23.87 50.69 0.89 6.29 1.16 5.77 1.35 0.27

TABLE 3
Empirical frequencies fij (%)

0 1 2 3 4 5 6 9 s

0 91.34 4.61 1.35 0.06 1.52 0.26 0.68 0.18 0.00

1 1.78 75.85 6.01 0.53 10.58 0.63 4.00 0.61 0.00

2 0.20 2.72 94.42 0.43 0.60 0.17 1.18 0.28 0.00

3 1.15 12.24 21.22 39.30 4.46 4.76 16.88 0.00 0.00

4 2.09 40.02 4.18 0.60 47.74 0.63 4.03 0.70 0.00

5 3.04 17.50 9.12 2.99 3.82 44.27 16.77 2.49 0.00

6 2.13 16.67 10.14 1.89 3.22 4.52 55.44 5.98 0.00

9 1.79 10.60 10.32 0.00 2.70 3.10 25.76 45.73 0.00

s 3.31 11.70 66.47 3.90 2.14 1.17 7.99 3.31 0.00

Moreover, the performance seems to differ for each
day of week. This factor of variability should be taken
into account when designing a system using a loca-
tion model. Future experiments should be conducted
for other comparisons. The distinction of each day of
the month could show that some days, as 1st day of
the month for example, are particular. The comparison
between each month could show different activities in
summer and in winter, and so on.

It could then be interesting to develop a new model
with a continuum approach considering estimations (in-
terpolation) between data observed.

3.2.2 Measures of perseveration in task
The model of the location of a person seems to be well
approximated by a Markovian process. A first order
Markov chain is sufficient in order to represent the prob-
abilities of transitions from locations to other locations.
The empirical means Ei,j of tasks remaining duration
should now be calculated.

The Table 2 (respectively 3) shows the frequencies fi
(respectively fij) empirically calculated from the 20%
learning part of the corpus.

As above-mentioned, M is the number of locations
recorded during a day. The sampling frequency is 1
second. Thus, M = 60 × 60 × 24 = 86400. Ei can by
estimated by : Ei,3 =

∑86400
k=0

k+1
2 fi(1− fi)f

k−1
ii

The mean of remaining time in task i, Ei,1, consists in
calculating, for each observing time t, the time remaining
in task i, divided by the number of times observed
(which is equal to M + 1 if the observation start from
0 to M). It expresses persistence in task i, but is not
equal to the mean of past time in i (it should be half
the preceding one).

One can now distinguish two particular cases.
If i was never observed : Ei,1 = 0

If i was always observed : Ei,1 =
(M+1)(M+2)

2

M+1 = 43201
For the other cases, some works have to be done now

in order to calculate Ei,1. It should be calculated for
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the Pólya’s urns approach and for the Markov chain
approach. Then, it could verify each hypothesis.

If Ei,1 is in the confidence interval of Ei,3, then we
should use this Markovian model due to its simplicity
(despite Pólya’s urns approach is available [35]). If it is
not the case, the same work has to be done with the
Pólya’s urns approach.

The complexity of the trajectories in the Markov
model, their entropy is HM = 0.889 throughout the
week. In this experiment, no difference in entropy was
observed depending on the day of the week.

4 TOWARDS AN APPLICATION TO REAL DATA
IN A MULTISENSOR CONTEXT

Calculating reliable persistence indexes in a multisensor
context requires to deal with constraints inherent in real-
environment as illustrated in 3.

Fig. 3. Procedure proposed to deal with real data in a
multisensor context

4.1 Censored data and the estimation of joint prob-
abilities

4.1.1 The classical Lancaster-Zentgraf approach

Let us define {Ai}i=1,...,n the set of events (resp. as-
sertions) structuring a Bayesian network (resp. a KBS).
We suppose that the Ai’s are obtained by knowing
m real random variables {Xk}k=1,...,m, defined on a
set Ω, e.g. Ai = {Xi < ti}. Let us consider now a
GDW (considered as a multidimensional contingency
table or generalized contingency tensor) structuring data
through the σ-algebra generated by the Ai’s. An atomic
event of this σ-algebra is called an equi-class. Each union
of equi-classes is called a ”view”. Each view is then the
union of disjoint intersections of events like Ai’s and Ac

i ’s
(where Ac

i = Ω\Ai). The events Ai and Aj are in mutual
independence if P (Ai ∩ Aj) = P (Ai)P (Aj), in inclusive
dependence if Ai ⊆ Aj or Aj ⊆ Ai, and in exclusive
dependence if Ai ∩ Aj = ∅.

In order to estimate in a multidimensional contingency
table, including censored and missing data, the joint
probabilities of the intersection of n events, Lancaster
defined the non-interaction of order 3 [47], generalizing
the mutual independence between three events. Then
Zentgraf [48] proposed an estimate of the joint proba-
bility of order n, from marginal and joint probabilities

of order 2 given by the following definition formula:

PLan(

n
⋂

i=1

Ai) =
∑

i,j,k1,...,kn−2∈{1,...,n}
i6=j 6=k1 6=...6=kn−2

P (Ai ∩Aj)P (Ak1) . . . P (Akn−2)

− (C2
n − 1)

n
∏

i=1

P (Ai)

The calculation of the above Lancaster-Zentgraf (LZ)
estimator involves the knowledge of the marginal and
of the order 2 intersection probabilities. For n = 3, the
equation above becomes:

PLan(A ∩B ∩ C) = P (A ∩B)P (C) + P (A ∩ C)P (B)

+ P (B ∩ C)P (A)− 2P (A)P (B)P (C).

PLan satisfies the projectivity property:

PLan(A ∩B ∩ C) + PLan(A ∩B ∩Cc) = PLan(A ∩B)

The LZ estimate is an exact formula if the events Ai

are independent or if all Ai’s are equal to Ω (inclusive
dependence); in these cases, the definition formula is
identical to the classical formula of independence, where
PInd denotes the product of the probabilities:

PLan(

n
⋂

i=1

Ai) = PInd(

n
⋂

i=1

Ai) =

n
∏

i=1

P (Ai)

However, the definition formula becomes incorrect in
the case of unless 2 disjoint events, where PLan(

⋂n
i=1 Ai)

is in general not equal to 0, and in the case of total
exclusive dependence (∀i 6= j, Ai ∩ Aj = ∅), where
PLan(

⋂n
i=1 Ai) is negative. We will study now simple

examples showing circumstances where the estimate is
incorrect.

Example 1: Suppose that A and B, and A and C are
independent. Then: PLan(A∩B∩C) = P (B∩C)P (A). But
P (A∩B∩C) = P (B∩C)P (A) if and only if A and B∩C
are independent, hence if the LZ estimate is correct we
must have:

A, B independent
A, B ∩ C independent

}

⇒ A, C independent,

This assertion being false in Example 2:

Example 2: Let us suppose that the events of each couple
are mutually independent. Then we have:

PLan(A ∩B ∩ C) = P (A)P (B)P (C)

In general, this assertion is false, because the mutual
independence between events of any couple is not im-
plying the independence of the whole set of events (if
they are 3 or more).

Example 3: Let us suppose that A and B are disjoint. Then
we have:

PLan(A ∩B ∩ C) = P (A ∩ C)P (B) + P (B ∩ C)P (A)

− 2P (A)P (B)P (C),
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since P (A ∩ B) = 0, but P (A ∩ B ∩ C) < P (A ∩ B) = 0
and P (A ∩ C)P (B) + P (B ∩ C)P (A) − 2P (A)P (B)P (C)
is not obligatory equal to 0, as shown below.

Example 4: Let us suppose that A, B and C are disjoint.
The definition formula gives:

PLan(A ∩B ∩C) = −2P (A)P (B)P (C)

because P (A ∩B) = P (A ∩ C) = P (B ∩ C) = 0, and the
PLan estimator provides a negative result.

Hence, the LZ definition formula gives a correct esti-
mation only in the cases of independence and of total in-
clusive dependence, for example when A ⊂ B ⊂ C = Ω,
where Ω is the whole assertion. For the cases where
the definition formula gives an incorrect estimate, we
propose an adapted new estimate.

4.1.2 A New Estimation Method
We introduce in this Section a new joint probabilities
estimator based on the local equipartition of the amount
of uncertainty (corresponding to a local maximal entropy
approach). The proposed formula is established to deal
with dependences characterized by strong incompatibili-
ties, circumstances not well taken into account by the LZ
formula above. The new estimator is called PNew and is
defined recursively by:

PNew(

n
⋂

i=1

Ai) =

∑n
j=1 PNew(

⋂

i6=j Ai)P (Aj)

n
, if n > 2

For the intersection of any three events from a set of
n events this equation becomes:

PNew(Ai ∩Aj ∩ Ak) = [P (Ai ∩ Aj)P (Ak)

+ P (Ai ∩ Ak)P (Aj)

+ P (Aj ∩Ak)P (Ai)]/3

In practice, the calculation of PNew is done in a re-
cursive way from the calculation of PNew on the triplets
of events involved in

⋂n
i=1 Ai. That involves as for the

LZ estimator the knowledge of the marginal and order
2 intersection probabilities. We have:

PNew(

n
⋂

i=1

Ai) =

∑

i<j P (Ai ∩ Aj)
∏

k 6=i,j P (Ak)

C2
n

Practically this means that we estimate P (Ai ∩Aj |Ak)
by P (Ai ∩Aj), which is in principle avalaible only if the
intersection Ai ∩ Aj is independent of Ak. Indeed, we
have in the case of mutual independence between any
intersection of a couple of events and the third event:

P (Ai ∩ Aj ∩ Ak) = PNew(Ai ∩Aj ∩ Ak)

We check that PNew satisfies the projectivity property,
if A1 is independent of A2:

PNew(A1∩A2∩A3)+PNew(A1∩A2∩A
c
3) = PNew(A1∩A2).

We introduce now three other estimators Σ and
Π (resp. Γ) defined as the arithmetic and geometric

Fig. 4. The different estimators of P (
⋂n

i=1 Ai) in case of
extreme inclusive dependence

mean of the probabilities P (Ai ∩ Aj) (resp. P (Ai ∩
Aj)

∏

k 6=i,j P (Ak)):

Σ(

n
⋂

i=1

Ai) =
∑

i<j

P (Ai ∩Aj)/(2
n−2C2

n);

Π(

n
⋂

i=1

Ai) =
∏

i<j

P (Ai ∩ Aj)
1/(n−1);

Γ(

n
⋂

i=1

Ai) =





∏

i<j

P (Ai ∩ Aj)
∏

k 6=i,j

P (Ak)





1/n

We give hereafter four demonstrative examples of
comparison between PNew, PLan, PInd, Σ and Π.

1. Extreme inclusive dependence
Let us suppose that: A1 = A2 = A3, with P (Ai) = p

and P (
⋂

Ai) = p; then we have:

PNew(
⋂

Ai) = p2;PLan(
⋂

Ai) = 3p2–2p3;

PInd(
⋂

Ai) = p3; Σ(
⋂

Ai) = p/2;Π(
⋂

Ai) = p3/2

PLan is ever closer to p than the other estimators, except
near 0 where Σ is the better estimator.

2. Extreme exclusive dependence
Let us suppose that: P (A1) = ε, P (A2 ∩ A3) = η; ∀i =

2, 3, P (Ai) = p, P (A1 ∩ Ai) = η2;P (
⋂

Ai) = η2/3, with
ε ≈ η1/2, then we have, by neglecting ηp (resp. η2, η5/2)
with respect to ε (resp. η, η2):

PNew(
⋂

Ai) = ηε/3;PLan(
⋂

Ai) = ε(η − 2p2);

PInd(
⋂

Ai) = p2ε; Σ(
⋂

Ai) = η/6;Π(
⋂

Ai) = 0
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Fig. 5. The estimators of P (
⋂n

i=1 Ai) in case of extreme
exclusive dependence (η = p/100)

Because PLan is negative, we choose in this case PNew

or Π which are the closest to P (
⋂

Ai).
Let us suppose now that : ∀i, k, Ai∩Ak = ∅: ∀i, P (Ai) =

p ≤ 1/3 and P (
⋂

Ai) = 0, then:

PNew(
⋂

Ai) = 0;PLan(
⋂

Ai) = −2p3;

PInd(
⋂

Ai) = p3; Σ(
⋂

Ai) = 0;Π(
⋂

Ai) = 0

Because PLan is negative, we choose in this case PNew,
Σ or Π, which only give the correct result.

Note that in the case complementary to that of the
inclusive dependence, we have, if Bi = Ac

i :

P (
⋂

Bi) = 1−
∑

P (
⋃

Ai) = 1− 3p

and its estimates are:

PNew(
⋂

Bi) = (1− 2p)(1− p) = 1− 3p+ 2p2;

PLan(
⋂

Bi) = 3(1− 2p)(1− p)− 2(1− p)3 = 1− 3p+ 2p3;

PInd(
⋂

Bi) = (1− p)3 = 1− 3p+ 3p2 − p3;

Σ(
⋂

Bi) = (1− 2p)/2;Π(
⋂

Bi) = (1− 2p)3/2

The better estimate is then as expected PLan.

3. Near exclusive independence
Let us suppose the following choice for A1, A2, A3:

Each Ai has a probability 1/2 and the circular sectors
noted ε have a probability ε (with ε ≤ 1/24). Let us
suppose that the Ai’s verify:

P (Ai) = 1/2, P (Ai ∩ Aj) = 1/4− ε, P (
⋂

Ai) = 1/8,

then the estimates of P (
⋂

Ai) are:

PNew(
⋂

Ai) = 1/8− ε/2;PLan(
⋂

Ai) = 1/8− 3ε/2;

PInd(
⋂

Ai) = 1/8; Σ(
⋂

Ai) = 1/8− ε/2;

Π(
⋂

Ai) = (1/4− ε)3/2

PInd(
⋂

Ai) being equal to P (
⋂

Ai) = 1/8, we choose in
this case PInd. Note that PNew and Σ are here better than
PLan.

4. Near inclusive independence
Let us consider the case where A1 = A2 = A3, with

P (Ai) = 1 − ε and P (
⋂

Ai) = 1 − 3ε. Then we have:

PNew(
⋂

Ai) = 1− 3ε+ 2ε2;PLan(
⋂

Ai) = 1− 3ε+ 2ε3;

PInd(
⋂

Ai) =
∏

i=1,2,3

P (Ai) = 1− 3ε+ 3ε2 − ε3;

Σ(
⋂

Ai) = (1− 2ε)/2;Π(
⋂

Ai) = (1− 2ε)3/2

PLan(
⋂

Ai) being the closest to P (
⋂

Ai) = 1 − 3ε, we
choose PLan.

4.1.3 A Maximum Entropy Principle
In this Section, we will show first that Π satisfies the
global maximum entropy, when the n Ai’s are close to
the mutual independence (independence of each couple
of events) and when the P (Ai)’s are small.

Proposition 1
Let us suppose that:∀i, j, k = 1, . . . , n, i 6= j 6=

k, P (Ai) = αi, P (Ai∩Aj) = βij ≈ αiαj , P (Ai∩Aj∩Ak) =
γ and: ∀m > 3, P (

⋂

j=1,m Aij) = 0. Then the amount of
entropy defined by the partition generated by the Ai’s
in Ω defined by:

H =

−(1−
∑

i

αi+
∑

i<j

βij−C3
nγ) log(1−

∑

i

αi+
∑

i<j

βij−C3
nγ)

−
∑

i

(αi −
∑

i<j

βij + C2
n−1γ) log(αi −

∑

j 6=i

βij + C2
n−1γ)

−
∑

i<j

(βij − (n− 2)γ) log(βij − (n− 2)γ)− C3
nγ log γ

is maximum when P (Ai ∩ Aj ∩ Ak) is estimated by Π.

Proof: We have:

∂H/∂γ ≈ C3
n log(1−

∑

i

αi +
∑

i<j

βij − C3
nγ)

+ C3
n − C2

n−1

∑

i

log(αi −
∑

i<j

βij + C2
n−1γ)

− nC2
n−1 + (n− 2)

∑

i<j

log(βij − (n− 2)γ)

+ (n− 2)C2
n − C3

n log γ − C3
n

If γ ≪ βij ≪ αi ≪ 1, ∂H/∂γ = 0 ⇔
C3

n log γ ≈ (n − 2)
∑

i<j log βij − C2
n−1

∑

i logαi ⇔

γ(
∏

i<j βij)
6/n(n1)/(

∏

i αi)
3/n ≈ (

∏

i<j βij)
3/n(n−1),

because the quasi-mutual independence implies:
∏

i<j βij ≈ (
∏

i αi)
n−1. Then for n = 3, we have:

γ ≈ Π(
⋂

Ai). If we do not neglect P (
⋂

j=1,m Aij)
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for m > 3, an analoguous proof shows that the
estimator of P (

⋂

i=1,n Ai) maximizing the entropy is
still approximatively Π(

⋂

Ai).
In case of independence between

⋂n
i=1;i6=k Ai and Ak

for any k, we can now prove that PNew satisfies the same
variational principle for a conditional entropy.

Proposition 2
Let us consider a family of n events A1,. . . , An and

define: Bk = (
⋂n

i=1;i6=k Ai) ∩ Ac
k. The Bk’s are disjoint

and the conditional entropy HB on B =
⋃n

k=1 Bk is
given by: HB = −

∑n
k=1 PB(Bk) log(PB(Bk)), where PB

is the conditional probability knowing B. Then HB is
maximum when P (Ai ∩ Aj ∩ Ak) is estimated by PNew.

Proof: HB is maximum for PB(Bk) = 1/n, i.e. for
P (Bk) = P (B)/n. Then we have:

P (Bk) = P (Bk|A
c
k)(1 − P (Ak))

P (Bk) = P (

n
⋂

i=1;i6=k

Ai)− P (

n
⋂

i=1

Ai)

Hence we deduce: ∀k = 1, . . . , n,

P (

n
⋂

i=1

Ai) = P (

n
⋂

i=1;i6=k

Ai)− P (B)/n

= P (

n
⋂

i=1;i6=k

Ai)−
n
∑

k=1

P (Bk|Ac
k)(1− P (Ak))

n

and

nP (

n
⋂

i=1

Ai) =

n
∑

k=1



P (

n
⋂

i=1;i6=k

Ai)− P (Bk|A
c
k)





+

n
∑

k=1

P (Bk|A
c
k)P (Ak)

If we assume the independence between
⋂n

i=1;i6=k Ai

and Ak for any k, then we get:

P (
n
⋂

i=1

Ai) =
n
∑

k=1

P (
n
⋂

i=1;i6=k

Ai)P (Ak)/n = PNew(
n
⋂

i=1

Ai)

4.1.4 Some Numerical Examples of Respective Use of
the Classical and new Estimation Methods

All estimators above less Σ are exact in case of in-
dependence but become false when we are far from
this case, some being better than the others in certain
circumstances, like inclusive or exclusive dependence, as
well as nearly independence. Then we will now compare
PLan, PNew, Σ and Π in particular cases of dependence
as summarized in the Table 4. The first row of the Table
4 refers to the exemple of extreme inclusive dependence
treated above. The second and third rows correspond to
the same case with respectively A1 near Ω and A1 near

∅. The fourth row refers to the case nearly independence
where:

P (A1) = P (A2) = P (A3), P (Ai∩Aj) = P (Ai)P (Aj)+η,

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3)

+ (P (A1) + P (A2) + P (A3))η/3

The fifth and sixth rows correspond to the same case
with respectively A1 near Ω and A1 near ∅. The seventh
row refers to the case of extreme exclusive dependence
treated above. The eighth and ninth rows represent the
same case with respectively A1 near Ω and A1 near ∅.

We see on the Table 4 that PNew(A1 ∩A2 ∩A3) is often
the best estimator of P (A1∩A2∩A3). More precisely, the
above results work out that PLan is the best estimation
in the case of inclusive dependence, whereas PNew is
the best one in the case of exclusive dependence and
is a better estimation than PInd in the inclusive case.
In practice, we need a generalized estimator which,
according to the case of dependence, is good as the
best among PLan, PNew or PInd. Let us define dInc, dExc

and dInd as the measures of the inclusive dependence,
the exclusive dependence and the mutual independence
deviation, respectively:

dInc({Ai}i=1,...,n) =
∑

i<j [P (Ai)+P (Aj)−2P (Ai∩Aj)]∑
i<j [P (Ai)+P (Aj)]

dExc({Ai}i=1,...,n) =
∑

i<j P (Ai∩Aj)
∑

i<j min[P (Ai),P (Aj)]

dInd({Ai}i=1,...,n) =
∑

i<j |P (Ai∩Aj)−P (Ai)P (Aj)|
∑

i<j max[
P (Ai)P (Aj),

maxi<j |P (Ai∩Aj)−P (Ai)P (Aj)|]

All above distances vary between 0 and 1. We have: (1)
dInc = 0 when the inclusion is maximal (A1 = A2 = A3)
and dInc = 1 when the Ai’s are disjoint; (2) dExc = 0 when
the exclusion is maximal (Ai’s disjoint) and dExc = 1
when the Ai’s are identical; and (3) dInd = 0 in case of
independence and dInd = 1 when the Ai’s are identical
or disjoint. Then the generalized estimator proposed to
estimate the joint probabilities is: P∗ = a1PLan+a2PNew+
a3PInd, where we have chosen

∑3
i=1 ai = 1 and

a1 = 1/2− dInc/2(dExc + dInd + dInc),

a2 = 1/2− dExc/2(dExc + dInd + dInc),

a3 = 1/2− dInd/2(dExc + dInd + dInc).

Let us consider now the observed frequencies (also
called ”empirical probabilities”) in a data simulation de-
scribing, in a Bayesian or knowledge network, a concept
C from three random Boolean variables X1, X2 and
X3. To each Xi are related two events {Xi = 0} and
{Xi = 1}. The observed frequencies are chosen equal to:

P ({X1=0}) =P (A1)=0.4=1−P ({X1=1})=1−P (A2),

P ({X2=0}) =P (B1)=0.65=1−P ({X2=1})=1−P (B2),

P ({X3=0}) =P (C1)=0.15=1−P ({X3=1})=1−P (C2).

We will suppose that the events are mutually indepen-
dent and that the empirical probabilities of intersections
F1(Ai ∩Bj ∩ Ck) are given in the Table 5.
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TABLE 4
Estimates of P (A1 ∩A2 ∩ A3), when P (A1) = α, P (A2) = β and P (A3) = γ in different cases of dependence

Dependency Events P PLan PNew PInd Σ Π Best
cases probabilities Estimation

Inclusive α ≃ β α 3α2 − 2α3 α2 α3 α
2 α

3
2 Max(PLan,Σ)

β ≃ γ

α ≃ (1 − ǫ) β β 2β2+β
3 β2 β

2 β
3
2 PLan

β ≃ γ

α ≃ ǫ ǫ ǫβ(3 − 2β) βǫ β2ǫ β+2ǫ
6 ǫ

√
β PLan

β ≃ γ

Nearly α ≃ β α3 + αη α3 + 3αη α3 + αη α3 α2+η
2 α3 + 3

2αη PNew

Independency β ≃ γ

α ≃ (1 − ǫ) β2(1 − ǫ) + η( 2β+1
3 ) β2(1 − ǫ) + 3η β2(1 − ǫ) + η β2 β2+2β−2βǫ+3η

6 β2(1 − ǫ) + 3
2 PNew

β ≃ γ

α ≃ ǫ β2ǫ + ηǫ
3 β2ǫ + ηǫ β2ǫ + ηǫ

3 β2ǫ β2+2βǫ+η
6 β2ǫ+ ηǫ

2 PNew

β ≃ γ

Exclusive α ≃ β 0 −2α3 0 α3 0 0 PNew,Σ,Π
β ≃ γ

α ≃ (1 − ǫ) 0 −ǫ2(1−ǫ)
2 0 β2 0 0 PNew,Σ,Π

β ≃ γ

α ≃ ǫ η2

3 ǫ(η − 2β2) ηǫ
3 β2ǫ η

6 0 PNew

β ≃ γ

If we examine the estimates of the joint probabilities in
the Table 5, we can calculate the distances to dependence
and to mutual independence proposed above for the
event corresponding to the intersection A2 ∩ B1 ∩ C2,
whose empirical probability is given by F1(A2 ∩ B1 ∩
C2) = 0.01. Then we have:

PInd(A2 ∩B1 ∩C2) = 0.33 PLan(A2 ∩B1 ∩ C2) = −0.63

PNew(A2 ∩B1 ∩ C2) = 0.01 P∗(A2 ∩B1 ∩ C2) = 0.06

The best estimator there is PNew, which is not sur-
prizing, because the comparison between the distances
dInc = 0.8235, dExc = 0.1375 indicates a case of exclusive
dependence and we have shown above that we would
privilegiate in these circumstances PNew.

For the event corresponding to the intersection A1 ∩
B2∩C2, whose empirical probability is given by F1(A1∩
B2 ∩ C2) = 0.2, the best estimator is PInd(A1 ∩ B2 ∩
C2) = 0.12, which is in agreement with the fact that the
event is far from the 2 extreme situations of dependence
(dInc = 0.5483, dExc = 0.2591). If we calculate the sum
of the squares of the differences between the empirical
joint probabilities and their estimators (SSP ), which
summarizes the performance of the estimators in the
Table 5, we obtain:

SSPInd = 0.1936, SSPLan = 0.5249,

SSPNew = 0.0210, SSP∗ = 0.0284,

which shows that PNew is globally the best estimator, P∗
being close to it.

To sum up, we propose P∗ as an estimator being
acceptable in any circumstance of dependence, because
it takes the best of the estimators PNew, PLan and PInd.

4.1.5 An optimized strategy for estimating the joint prob-
abilities
We propose now the following incremental procedure
to optimize the convergence to the best estimates of the
joint probabilities:

TABLE 5
Empirical joint probabilities F1(Ai ∩Bj ∩ Ck) and their

estimations
A1

B1 B2

C1 C2 C1 C2

F1 0.1 0.001 0 0.2
PInd 0.0390 0.2210 0.0210 0.1190
PLan 0.0422 -0.2211 0.0350 0.0872
PNew 0.0401 0.0736 0.0257 0.1084
P∗ 0.0399 0.0949 0.0250 0.1099

A2

B1 B2

C1 C2 C1 C2

F1 0 0.01 0.03 0.012
PInd 0.0585 0.3315 0.0315 0.1785
PLan -0.0360 -0.6336 -0.0282 -0.1864
PNew 0.0270 0.0098 0.0116 0.0569
P∗ 0.0315 0.0561 0.0145 0.0744

- To ask the expert delivering the knowledge for a
subjective estimation of the assertions probabilities,i.e.
for any event Ai, to get P0(Ai) ± Er(P0(Ai)), where
Er(P0(Ai)) is a subjective error - To consider Er(P0(Ai))
as equal to two times the standard deviation of P0(Ai),
considered as a Gaussian random variable representing
a subjective probability. Then (E(P0(Ai)))

2/4 is an esti-
mator of the variance V (P (A0)) of P0(Ai).

- To calculate a pseudo initial sample size N0 =
4P0(Ai)(1 − P0(Ai))/(E(P0(Ai)))

2, by considering that
if the subjective estimation P0(Ai) proceeded from an
empirical observation, we would have: V (P0(Ai)) =
P0(Ai)(1 − P0(Ai))/N0, where N0 is the sample size of
the observations used to do this estimation

- To check with the expert if this value is realistic
taking into account his past experience

- To use a progressively updated case data base made
of N cases associated to the knowledge network and
improve the initial estimate P0(Ai) by calculating the a
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posteriori value:

PN (Ai) = (N0P0(Ai) + cases verifying Ai)/(N0 +N)

- To do the same as done for marginal probabilities
and calculate PN (Ai ∩Ak) for all intersection of order 2
involved in the views of interest

- To estimate the probability of any intersection of Ai’s
by using the PN∗ estimator.

4.2 Information fusion in a multi-sensors context

An application directly related to the decision procedure
in Bayesian networks concerns the multi-sensors fusion
[9]. When the information needed to execute a task T
in a human or artificial sensory-motor context comes
from multiple sensors Si whose confidence is taken
into account by observing n random variables Xi, the
probability P (T |

⋂n
i=1{Xi = ki}) to decide that T is

executed knowing the values ki’s of the Xi’s, we have to
rapidly estimate P (T∩(

⋂n
i=1 Ai)) and P (

⋂n
i=1 Ai), where

Ai = {Xi = ki}.
Recent papers [49], [50] proposed to use a Bayesian

approach in order to mime the fonctionning of the cen-
tral nervous system. They supposed that the brain func-
tions by fusing information in evaluating conditional
probabilities, knowing a priori distribution (knowledge
about the environment) and observing random variables
(metrologic sensors).

An example of such an information fusion can be
obtained in the context of human postural control cor-
rection in which the action consists in correcting a
erroneous position of the body. It is generally agreed
that maintaining an upright stance or seated posture
involves the integration (fusion) of sensory information
from multiple natural sensors including visual (variable
X1), somatosensory (variable X2) and vestibular (vari-
able X3) systems [51]. However, augmented/substituted
artificial sensory information also can become a feedback
to the brain when one of the natural sensory inputs is
unavailable/undetermined/altered, or when one merely
wants to enhance the postural control for accurate per-
formances in daily-living, professional or sportive activ-
ities. Along theses lines, innovative health technologies,
based on the concept of ”sensory substitution” [16] have
been recently developed for pressure sores prevention in
the case of spinal cord injuries (persons with paraplegia
or tetraplegia) [17], [19] and for fall prevention in older
and/or disabled adults [20], [21], [22], [23], [24], [25],
[26], [27]. The underlying principle of these biomedical
devices consists in supplying individuals with supple-
mentary somato-sensory information related to pressure
distribution beneath the buttock or the feet (variables
X1, X2 and X3), recorded by the means of artificial
sensors (like pressure mapping), via an alternative sen-
sory modality (electrotactile stimulation of the tongue,
variable X4). At this point, an effective fusion of natural
(variables X1, X2 and X3) and artificial (more reliable
and accurate than the natural one’s) sensory information

(variable X4) is crucial to enable individuals with spinal
cord injuries, or with somatosensory loss in the feet (e.g.,
from diabetic peripheral neuropathy) to become aware of
a localized excess of pressure at the skin / seat interface
and / or postural orientation and thus to make adaptive
postural corrections to prevent the formation of pressure
ulcers and / or fall. Then any control and correction
procedure needs the real-time calculation of probabilities
like:
P ({X4 = c}|{X1 = k1}∩{X2 = k2}∩{X3 = k3}), where c
is the coding value of a tongue stimulation. We propose
in next Section a procedure for a fast estimation of joint
probabilities like P ({X4 = c} ∩ {X1 = k1} ∩ {X2 = k2} ∩
{X3 = k3}) and P ({X1 = k1} ∩ {X2 = k2} ∩ {X3 = k3}),
by observing together only couples of sensors and then
estimating only the corresponding marginal empirical
frequencies of order 1 and 2. Another example of use of
such techniques concerns the cardio-respiratory alarm.
Let us suppose that a person followed for a risk of
cardiac failure is equipped with three sensors: i) a smart
clothes recording the cardiac and respiratory rhythm
able to detect a trouble in the dynamics of the sinusal
respiratory arythmia ii) a wrist sensor giving the arterial
pressure and iii) a geo-localizer like a GPS or a RFID
tool fixed on the belt (Figure 2). The three corresponding
signals X1, X2 and X3 are supposed to be random
and stochastically dependent, but are often not recorded
together if the patient followed up suffers from a degen-
erative disease and is forgetting one (chosen by chance)
of the three sensors. If during the learning phase the
system has estimated the three marginal joint probabil-
ity distributions {(Xi, Xj)}i,j∈{1,2,3}, then we can from
the observation of only couples of variables during a
week calculate the whole joint distribution of the triplet
(X1,X2,X3), and detect if there are significant observa-
tions deviating from the physiological distribution by
calculating the chi-square distance between the latter
and the currently observed. In case of significant dif-
ference, we anticipate the cardiac failure by performing
an effort ECG and counselling for an adapted therapy.

We should now develop a procedure to take into
account a possible nychtemeral (day versus night) phase
shift between consecutive days showing the same se-
quence of tasks along the daily activity, but shifted
in time without any pathological signification except a
change in the sleeping clock, causing a loss by the el-
derly people of its synchronization with the nycthemeral
zeitgebers (synchronizers), like meals or social activities.

4.3 Correction of a nycthemeral phase shift

We propose to calculate the persistence parameter after
an eventual nychtemeral phase shift. By considering that
the dominant (in time) activity of an hour leads to assign
to this hour a symbol chosen among 4, corresponding to
four main types of activities:

A Ambulatory Activity
G Generic Social or Cultural Activity
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Fig. 6. Empirical distribution of the mean number E(M)
of matches calculated between 500 activities sequences
D1, . . . , D500 and 30 000 random sequences, showing
that the match between D1 and D−1 is significantly better
than a random match (p < 10−3)

C Cooking & Eating
U Unassigned to a Specific Activity (rest or sleep)

If we denote by M the random variable equal to
the number of matches between the activities sequence
of two consecutive days, e.g. sequence x at day D1
and sequence y at the previous day D − 1, then we
have: M = n − mink=1,...,n dH(x, σk(y)), where dH is
the classical Hamming distance and σk(y) is the chain
obtained by opening y at the letter of phase k through-
out the nycthemere (day versus night). We call circular
Gumbel distribution the probability law of M . Let us
suppose that we have recorded the daily activities at n
(n = 22) times (by considering that the hours 24, 1 and 2
correspond to the same sleeping activity). The expected
number of matches E(M) in the case of the comparison
of the D1 and D − 1 sequences of activities is less than
the maximum number of matches observed in the case
of comparison between 22 independent chains of length
22, because a change of the origin of phases on the
ring does not correspond strictly to a new chain tossing.
Then we can write: P (M < k) > P (∩i=1,...,22(Xi < k)),
where the Xi’s are independent identically distributed
(i.i.d.) random variables, having as common distribution,
the binomial law B(22, 1/4), i.e. the distribution of a
binomial variable X equal to the number of matches
between 2 independent sequences, by supposing that the
occurrence of each activity A, U, G, C has the probability
1/4 and there is 22 times in the lapse of recording. If n
increases (i.e. if the temporal sample is refined, e.g. from
hours to minutes), then the circular Gumbel distribution
tends to the supi=1,...,nXi distribution, and we have
asymptotically in n:

E(M) =

n
∑

k=1

P (M ≥ k) = n−
n
∑

k=1

P (M < k)

≈ n−
n
∑

k=1

P (∩n
i=1(Xi < k)) = n−

n
∑

k=1

P (X < k)n

Hours: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sequence D − 1: CAAGAUGAAUGGUACUGCCAUU
Sequence D1: UCAGGUAAGUGUUCACUGCCAU

Because the mean m (respectively variance s2) of X
is equal to n/4 and (respectively 3n/16), we can neglect
(with an approximation less than 2%, taking into consid-
eration that X is asymptotically Gaussian) the quantities

P (X ≥ k)n for k > I = i(m+ 3s) + 1 = i(n4 + 3
√
3n
4 ) + 1,

where i(x) is the nearest integer less than x, and the
quantities (1 − P (X ≥ k))n for k < I ′ = i(m+ 2s)− 1 =

i(n4 + 2
√
3n
4 )− 1:

E(M) ≈ I ′ + n

I
∑

k=I′+1

P (X ≥ k)

If n = 22, we have: s ≈ 2, I ′ = 8, I = 12 and we have:
E(M) ≈ 8 + 22

∑

k=9,...,12(P (X ≥ k)) ≈ 9.32.
We can notice also that the distribution of the

supi=1,...,n Xi, hence the circular Gumbel distribution,
behaves like a single Gaussian variable with a suitably
chosen variance [52].

Suppose that the 22 activities recorded at day D −
1 correspond to the sequence: UCAGGUAAGUGUU-

CACUGCCAU. Then we can compare the other days to
this reference sequence by using the circular Hamming
distance and the significativity of the result will be given
with respect to the circular Gumbel distribution, whose
empirical mean is approximatively Gaussian of mean
9.55 (Figure 6). By comparing for example the sequence
D1 to the reference sequence D − 1, we find 12 as
number of matches, with a nycthemeral phase shift of 1,
which is significantly better than the mean match with a
random sequence (p < 10−3). An alarm will be triggered
only in case of a significant difference observed after
correction of the nychtemeral phase shift which can not
be considered as pathologic in elderly people.

5 CONCLUSION

We propose in this paper a strategy for estimating
from localization data collected at home a persistence
parameter quantifying the degree of perseveration in
a task a person can pathologically develop. In case of
censored or false data (badly calibrated sensor, leaved off
on the person, etc.), we develop a method for estimating
joint probabilities in the Bayesian network or in the
knowledge base in which data are managed, in any case
of dependence between the observed actimetric variables
involved in the surveillance process and in the alarm de-
cision procedure. Marginal and order 2 joint probabilities
are supposed to be known (if not, we assume the mutual
independence) such that it is possible to estimate with
a good precision any joint probability of higher order
by using a convex compromise between the classical
Lancaster-Zentgraf estimator and new estimators we
have introduced. Simulated examples studied in the pa-
per evidence the efficiency of such an estimation strategy,
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and eventually we explain a methodology of using these
estimates in the calculation of the perseveration index.
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